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Lattice LSTM for Chinese Sentence Representation
Yue Zhang , Yile Wang , and Jie Yang

Abstract—Words provide a useful source of information for
Chinese NLP, and word segmentation has been taken as a pre-
processing step for most downstream tasks. For many NLP tasks,
however, word segmentation can introduce noise and lead to error
propagation. The rise of neural representation learning models
allows sentence-level semantic information to be collected from
characters directly. As a result, it is an empirical question whether a
fully character-based model should be used instead of first perform-
ing word segmentation. We investigate a neural representation that
simultaneously encodes character and word information without
the need for segmentation. In particular, candidate words are found
in a sentence by matching with a pre-defined lexicon. A lattice struc-
tured LSTM is used to encode the resulting word-character lattice,
where gate vectors are used to control information flow through
words, so that the more useful words can be automatically identified
by end-to-end training. We compare the performance of the result-
ing lattice LSTM and baseline sequence LSTM structures over both
character sequences and automatically segmented word sequences.
Results on NER show that the character-word lattice model can
significantly improve the performance. In addition, as a general
sentence representation architecture, character-word lattice LSTM
can also be used for learning contextualized representations. To this
end, we compare lattice LSTM structure with its sequential LSTM
counterpart, namely ELMo. Results show that our lattice version of
ELMo gives better language modeling performances. On Chinese
POS-tagging, chunking and syntactic parsing tasks, the resulting
contextualized Chinese embeddings also give better performance
than ELMo trained on the same data.

Index Terms—Lattice LSTM, NER, language modeling,
contextualize representation.

I. INTRODUCTION

CHINESE sentences are naturally written as sequences of
characters. On the other hand, words are a basic unit of

semantic information, and have been taken as a basic source of
features for Chinese NLP. As a result, word segmentation [1]
has been taken as a pre-processing step for downstream Chinese
tasks such as POS-tagging [2], parsing [3] and information
extraction [4]. Chinese word segmentation models are far from
being perfect. Although word segmentation can be useful for
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Fig. 1. Word character lattice.

domains where there are rich training data, the accuracy can be
significantly lower for social media, medicine, literature and
other domains [5]–[10], causing error propagation to down-
stream tasks. With the rise of deep learning, neural sequence
encoders allow better sentence-level features to be extracted
from character sequences alone. As a result, many end-to-end
neural Chinese NLP models avoid using Chinese word segmen-
tation [11]. This results in a dilemma between the use of word
segmentation and the choice of performing Chinese NLP based
on a fully character-based system.

Intuitively, character sequences contain exponential segmen-
tation ambiguities, which can make it challenging to encode
precisely useful word information through a neural representa-
tion. To address this issue, word information can be a useful
addition. Consider for the example the task of named entity
recognition. As shown in Figure 1, given the sentence “����

��� (Nanjing Yangtze River Bridge),” word sequences such
as “���� (Yangtze River Bridge),” “�� (Yangtze River)”
and “�� (Bridge)” can be used to disambiguate potential
relevant named entities in a context, such as the person name “�
�� (Daqiao Jiang)”. Although there are ambiguities among
potential words such as “�� (mayor)” and “�� (Yangtze
river),” knowing these candidate words can largely reduce am-
biguities embedded in the character sequence alone.

Given the above observations, we consider a neural sentence
representation model that enables us to leverage word infor-
mation without word segmentation. In particular, we assume
that a word lexicon is available, which provides possible words
given a sentence. Such a lexicon can be obtained from lexical
resources such as HowNet [12], knowledge resources such as
Baidu Baike1, and large post-processed corpora with automatic
segmentation. Given such a lexicon, possible words in a sentence
can be found by matching all sub-sequences to the lexicon.
The potential words and the original characters form a lattice
structure, which contain both the correct segmentation path and
those with incorrect words such as the word “�� (mayor)” in
Figure 2. There are an exponential number of word-character
paths in a lattice, with only one correct path.

1[Online]. Available: https://baike.baidu.com/
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Fig. 2. Lattice LSTM structure.

We leverage a lattice LSTM structure for automatically con-
trolling information flow from the beginning of the sentence
to the end. As shown in Figure 2, gated cells are used to
dynamically route information from different paths to each char-
acter, so that words that are relevant to the training task can be
picked up automatically in the representation process for better
performance. Compared with character-based and word-based
methods, our model has the advantage of using explicit word
information over character sequence labeling without suffering
from segmentation error. We compare the word-character lattice
LSTM model with its sequence LSTM baseline on NER and
language modeling tasks.

Inspired by the recent success in pre-trained language models
as contextualized word representations [13]–[15], we further
consider using lattice LSTM to replace standard LSTM for
pre-training a bidirectional LSTM Chinese language model,
which serves as a word-informed alternative to character-based
ELMo. To this end, two factors must be considered on top of
the naive lattice LSTM structure for NER. First, batch training
should be enabled for handling large scale training. This is
non-trivial since the lattice structure for each sentence can differ.
Second, multi-layer support should be considered to allow better
encoding power. We tackled these two issues using a novel filled
lattice structure, resulting in a MUlti-layer LAttice Network
(MULAN) for Chinese representation.

Rich experiments show that our model significantly out-
performs both character sequence labeling models and word
sequence labeling models using LSTM-CRF, giving the best
results over a variety of Chinese NER datasets across dif-
ferent domains. In addition, word-character lattice also gives
better results on Chinese language modeling compared with
character-based sequence LSTM. Finally, MULAN contextu-
alized embeddings are useful for improving a number of other
Chinese tasks, including POS-tagging and syntactic chunking.
Significantly better results are obtained as compared to using
ELMo contextualized character embeddings on these tasks. We
obtain the best-reported results on all relevant benchmarks. Our
code and data are released.2

This article is a largely extended version of a conference
version [16], which presents the basic model for lattice LSTM
Chinese NER. In this journal version, we further consider
its multi-layer and batch extension, the empirical results
on language model training, the pre-training of MULAN

2[Online]. Available: https://github.com/jiesutd/LatticeLSTM and https://
github.com/ylwangy/Lattice4LM

contextualized Chinese embeddings, and the empirical study
of using MULAN vectors for Chinese NER, POS-tagging,
chunking and dependency parsing.

II. RELATED WORK

Lattice LSTM: Lattice structured RNNs can be viewed as a
natural extension of tree-structured RNNs [17] to DAGs [18],
[19]. They have been used to model motion dynamics [20],
dependency-discourse DAGs [21], as well as speech tokeniza-
tion lattice [22] and multi-granularity segmentation outputs [23]
for NMT encoders. Compared with existing work, our lattice
LSTM is different in both motivation and structure. For ex-
ample, being designed for character-centric lattice-LSTM-CRF
sequence labeling, it has recurrent cells but not hidden vectors
for words. To our knowledge, we are the first to design a novel
lattice LSTM representation for mixed characters and lexicon
words.

NER: [24] attempted to solve the problem using a uni-
directional LSTM, which was among the first neural models for
NER. [25] used a CNN-CRF structure, obtaining competitive
results to the best statistical models. [26] used character CNN
to augment a CNN-CRF model. Most recent work leverages
an LSTM-CRF architecture. [27] uses hand-crafted spelling
features; [28] and [29] use a character CNN to represent spelling
characteristics; [30] use a character LSTM instead. [31] build
a unified framework NCRF++ which includes all the models
above.

Character sequence labeling has been the dominant approach
for Chinese NER [32]–[34]. There have been explicit dis-
cussions comparing statistical word-based and character-based
methods for the task, showing that the latter is empirically a su-
perior choice [35]–[37]. We find that with proper representation
settings, the same conclusion holds for neural NER. On the other
hand, lattice LSTM is a better choice compared with both word
LSTM and character LSTM.

Chinese Language Modeling: Language modeling is a basic
task for NLP and it is more challenge for Chinese because
of the issue of word segmentation. Zhao et al. [38] improved
the performance of Chinese language modeling through lexicon
generation and lexicon pruning. Buckman et al. [39] propose
a language modeling paradigm over multi-character chunks,
marginalizing over all segmentations of a sentence. Our method
is different in using a lattice structure to integrating both char-
acter and word information.

Contextualized Embeddings: Neural language modeling has
been shown capable of capturing deep semantic features from
large unlabeled resources, which can be useful semi-supervised
signals for NLP tasks [40], [41]. ELMo [13] provides contextu-
alized word representations generated from word-level language
modeling. GPT [14] improves language understanding by gener-
ative pre-training based on Transformer [42]. BERT [15] investi-
gates a self-attention-network for pre-training deep bidirectional
representations. Our work is in line, building language-model-
based contextualized representation pre-trained from large raw
text corpus for Chinese. Different from the above methods,

https://github.com/jiesutd/LatticeLSTM
https://github.com/ylwangy/Lattice4LM
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Fig. 3. Word/character LSTM and word-character lattice LSTM Models.

however, we integrate both character and word information, gen-
erating better contextualized representation without suffering
from potential word segmentation errors.

III. WORD-CHARACTER LATTICE LSTM

We take the standard sequential LSTM as our baseline,
discussing the representation of a sentence over a character
sequence and a word sequence, respectively, where the latter
corresponds to a representation using word segmentation. Our
word-character lattice LSTM can be viewed as a natural ex-
tension to the sequential LSTM structure. This this section, we
discuss the three models in a unified notation. Figure 4 gives a
structural illustration.

A. Character-Based LSTM

The character-based model is shown in Figure 3(a). It uses
an LSTM-CRF model on the character sequence c1, c2, . . . , cm.
Each character cj is represented using

xc
j = ec(cj) (1)

ec denotes a character embedding lookup table.
A bidirectional LSTM (same structurally as Eq. 11) is

applied to x1,x2, . . . ,xm to obtain
−→
h c

1,
−→
h c

2, . . . ,
−→
h c

m and←−
h c

1,
←−
h c

2, . . . ,
←−
h c

m in the left-to-right and right-to-left directions,
respectively, with two distinct sets of parameters. The hidden
vector representation of each character is:

hc
j = [

−→
h c

j ;
←−
h c

j ] (2)

Char + bichar: Character bigrams have been shown useful for
representing characters in word segmentation [43], [44]. We
augment the character-based model with bigram information by
concatenating bigram embeddings with character embeddings:

xc
j = [ec(cj); e

b(cj , cj+1)], (3)

where eb denotes a charater bigram lookup table.
Char + softword: It has been shown that using segmentation

as soft features for character-based models can lead to improved
performance [4], [45]. We augment the character representation
with segmentation information by concatenating segmentation
label embeddings to character embeddings:

xc
j = [ec(cj); e

s(seg(cj))], (4)

where es represents a segmentation label embedding lookup
table. seg(cj) denotes the segmentation label on the character
cj given by a word segmentor. We use the BMES scheme for
representing segmentation [1].

B. Word-Based LSTM

The word-based model is shown in Figure 3(b). It takes the
word embedding ew(wi) for representation each word wi:

xw
i = ew(wi), (5)

where ew denotes a word embedding lookup table. A bi-
directional LSTM (Eq. 11) is used to obtain a left-to-right
sequence of hidden states

−→
hw
1 ,
−→
hw
2 , . . . ,

−→
hw
n and a right-to-

left sequence of hidden states
←−
hw
1 ,
←−
hw
2 , . . . ,

←−
hw
n for the words

w1, w2, . . . , wn, respectively. Finally, for each word wi,
−→
hw
i and←−

hw
i are concatenated as its representation:

hw
i = [

−→
hw
i ;
←−
hw
i ] (6)

Integrating character representations: Character CNN [28]
and LSTM [30] are used for representing the character sequence
within a word as two alternatives. Denoting the representation of
characters withinwi asxc

i , a new word representation is obtained
by concatenation of ew(wi) and xc

i :

xw
i = [ew(wi);x

c
i ] (7)

Word + char LSTM: Denoting the embedding of each in-
put character as ec(cj), we use a bi-directional LSTM

(Eq. 11) to learn hidden states
−→
h c

t(i,1), . . . ,
−→
h c

t(i,len(i)) and
←−
h c

t(i,1), . . . ,
←−
h c

t(i,len(i)) for the characters ct(i,1), . . . , ct(i,len(i))
of wi, where len(i) denotes the number of characters in wi. The
final character representation for wi is:

xc
i = [

−→
h c

t(i,len(i));
←−
h c

t(i,1)] (8)
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Word + char LSTM′: We investigate a variation of word + char
LSTM model that uses a single LSTM to obtain

−→
h c

j and
←−
h c

j

for each cj . It is similar with the structure of [46] but not uses
the highway layer. The same LSTM structure as defined in Eq.
11 is used, and the same method as Eq. 8 is used to integrate
character hidden states into word representations.

Word + char CNN: A standard CNN [47] structure is used
on the character sequence of each word to obtain its character
representation xc

i . Denoting the embedding of character cj as
ec(cj), the vector xc

i is given by:

xc
i = max

t(i,1)≤j≤t(i,len(i))
(W�

CNN

⎡
⎢⎢⎣

ec(cj− ke−1
2

)

. . .
ec(cj+ ke−1

2
)

⎤
⎥⎥⎦+ bCNN), (9)

where WCNN and bCNN are parameters, ke = 3 is the kernel size
and max denotes max pooling.

C. Word-Character Lattice LSTM

The overall structure of the word-character lattice model is
shown in Figure 2, which can be viewed as an extension of
the character-based model, integrating word-based cells and
additional gates for controlling information flow.

Shown in Figure 3(c), the input to the model is a character se-
quence c1, c2, . . . , cm, together with all character subsequences
that match words in a lexicon D. The lexicon D can be built
by collecting all the words from the automatically segmented
large raw text. Using wd

b,e to denote such a subsequence that
begins with character index b and ends with character index e,
the segment wd

1,2 in Figure 1 is “�� (Nanjing)” and wd
7,8 is

“�� (Bridge)”.
Four types of vectors are involved in the model, namely input

vectors, output hidden vectors, cell vectors and gate vectors. As
basic components, a character input vector is used to represent
each character cj as in the character-based model:

xc
j = ec(cj) (10)

The basic recurrent structure of the model is constructed using
a character cell vector ccj and a hidden vector hc

j on each cj ,
where ccj serves to record recurrent information flow from the
beginning of the sentence to cj and hc

j is used for sequence
labelling representation.

The basic recurrent LSTM functions are:⎡
⎢⎢⎣

icj
oc
j

f cj
c̃cj

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

σ
σ
σ

tanh

⎤
⎥⎥⎦

⎛
⎝Wc�

⎡
⎣

xc
j

hc
j−1

⎤
⎦+ bc

⎞
⎠

ccj = f cj � ccj−1 + icj � c̃cj

hc
j = oc

j � tanh(ccj)

(11)

where icj , f
c
j and oc

j denote a set of input, forget and output gates,
respectively. Wc� and bc are model parameters. σ() represents
the sigmoid function.

Different from the character-based model, however, the com-
putation of ccj now considers lexicon subsequences wd

b,e in the

sentence. In particular, each subsequence wd
b,e is represented

using

xw
b,e = ew(wd

b,e), (12)

where ew denotes the same word embedding lookup table as in
Section III-B.

In addition, a word cell cwb,e is used to represent the recurrent
state of xw

b,e from the beginning of the sentence. The value of
cwb,e is calculated by:

⎡
⎣
iwb,e
fwb,e
c̃wb,e

⎤
⎦ =

⎡
⎣

σ
σ

tanh

⎤
⎦
⎛
⎝Ww�

⎡
⎣
xw
b,e

hc
b

⎤
⎦+ bw

⎞
⎠

cwb,e = fwb,e � ccb + iwb,e � c̃wb,e

(13)

where iwb,e and fwb,e are a set of input and forget gates. There is
no output gate for word cells since labeling is performed only at
the character level.

With cwb,e, there are more recurrent paths for information flow
into each ccj . For example, in Figure 2, input sources for cc7
include xc

7 (� Bridge), cw6,7 (�� Bridge) and cw4,7 (����

Yangtze River Bridge).3 We link all cwb,e with b ∈ {b′|wd
b,′e ∈ D}

to the cell cce. We use an additional gate icb,e for each subsequence
cell cwb,e for controlling its contribution into ccb,e:

icb,e = σ

⎛
⎝Wl�

⎡
⎣

xc
e

cwb,e

⎤
⎦+ bl

⎞
⎠ (14)

The calculation of cell values ccj thus becomes

ccj =
∑

b∈{b′ |wd
b,′j∈D}

αc
b,j � cwb,j +αc

j � c̃cj (15)

In Eq. 15, the gate values icb,j and icj are normalised to αc
b,j

and αc
j by setting the sum to 1.

αc
b,j =

exp(icb,j)

exp(icj) +
∑

b′∈{b′′ |wd
b,′′j∈D} exp(i

c
b,′j)

αc
j =

exp(icj)

exp(icj) +
∑

b′∈{b′′ |wd
b,′′j∈D} exp(i

c
b,′j)

(16)

IV. NER AND LANGUAGE MODELING

We perform named entity recognition (NER) and language
modeling as two tasks to compare the effectiveness of word-
character lattice LSTM with sequential LSTM. In particular, for
NER, a CRF layer is used on top of the LSTM representations
for predicting the output. For language modeling we use a simple
softmax layer for predicting the next character given a sequence
of characters.

3We experimented with alternative configurations on indexing word and
character path links, finding that this configuration gives the best results in
preliminary experiments. Single-character words are excluded; the final per-
formance drops slightly after integrating single-character words.
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A. NER

The best NER models [27], [28], [30] use LSTM-CRF as
the main network structure. We compare lattice LSTM with its
sequential counterparts under this framework. Formally, denote
an input sentence as s = c1, c2, . . . , cm, where cj denotes the
jth character. s can further be seen as a word sequence s =
w1, w2, . . . , wn, where wi denotes the ith word in the sentence,
obtained using a Chinese segmentor. We use t(i, k) to denote the
index j for the kth character in the ith word in the sentence. Take
the sentence in Figure 1 for example. If the segmentation is “�
�� ����,” and indices are from 1, then t(2, 1) = 4 (�)
and t(1, 3) = 3 (�). We use the BIOES tagging scheme [48]
for both word-based and character-based NER tagging.4

Given the representation methods in Section III, a standard
CRF layer is used on top of h1,h2, . . . ,hτ , where τ is n for
character-based and lattice-based models and m for word-based
models. The probability of a label sequence y = l1, l2, . . . , lτ is

P (y|s) = exp(
∑

i(W
li
CRFhi + b

(li−1,li)
CRF ))

∑
y′ exp(

∑
i(W

l′i
CRFhi + b

(l′i−1,l
′
i)

CRF ))
(17)

where y′ represents an arbitrary label sequence, and Wli
CRF is a

model parameter specific to li, and b
(li−1,li)
CRF is a bias specific to

li−1 and li.
We use the first-order Viterbi algorithm to find the highest

scored label sequence over a word-based or character-based
input sequence. Given a set of manually labeled training data
{(si, yi)}|Ni=1, sentence-level log-likelihood loss with L2 regu-
larization is used to train the model:

L =
N∑
i=1

log(P (yi|si)) + λ

2
||Θ||2, (18)

where λ is the L2 regularization parameter and Θ represents the
parameter set.

During back-propagation training, we compute local gradi-
ents on hi over the CRF layer, and then train the sequential and
lattice LSTM representation layers by further back-propagated
gradients.

B. Language Modeling

Given a partial sentence s = c1, . . ., ci−1, our goal is to predict
ci. To this end, both a baseline LSTM and a character-word
lattice LSTM in Section III can be used to encode s, obtaining
a sequence of hidden states hc

1, . . .,h
c
i−1. In this process, only

lexicon words that match the partial sentence s are used to build
the lattice structure over s; we do not consider partial matches,
where a sub word from the beginning of a lexicon word matches
the last few characters in s.

Similar to a standard character-based LSTM language model,
the last hidden state hc

i−1 is used to predict ci

P (ci|s) = softmax
(
Wohc

i−1
)

where Wo is a model parameter.

4To keep the figure concise, we (i) do not show gate cells, which uses ht−1
for calculating ct; (ii) only show one direction.

Fig. 4. The structure of multi-layer stacked lattice LSTM.

Given a set of training data D = {si}|Ni=1, we maximize the
log-likelihood of the data

J =

N∑
i=1

|si|∑
j=1

P (cij |ci1, . . ., cij−1)

where si = ci1, . . ., c
i
|si|.

Similar to the case of NER, during training local gradients
are first back-propagated to hi from the softmax layer, and then
further back-propagated for training the sequential and lattice
LSTM structures in Section III.

V. MULTI-LAYER LATTICE LANGUAGE MODEL AND

CONTEXTUALIZED CHINESE REPRESENTATION

Language modeling offers a more general testbed for repre-
sentation learning, which serves as a basis for training contextu-
alized embeddings [13]. Compared with training for small-scale
tasks, training for contextualized embedding models yet poses
two main challenges. First, the model should accommodate a
significantly larger amount of training data, and therefore mul-
tiple encoding layers can be necessary for better fitting. Second,
batch training can be necessary to allow faster convergence.
This section discusses multi-layer extension and batch training,
respectively, before language model training and contextualized
representation.

A. Multi-Layer Extension

We build multi-layer lattice LSTM by feeding the hidden
states hc

j and subsequence representations xw
b,e into a new layer

of lattice LSTM as input to generate a higher level meaning
of characters. Multiple layers of lattice LSTM can be stacked,
resulting in a hierarchy of hidden states hc,1

j , hc,2
j , ..., hc,l

j for

each character cj , where hc,l
j denotes the hidden state hc

j of
layer number l. One example multi-layer lattice LSTM model
is shown in Figure 4.

B. Batch Training

Because different sentences have different lattice structures,
cell computation cannot be directly batched. For example, as
Figure 5 shows, the input lattice structures for the first sentence
are “�� (Nanjing)” and “��� (Nanjing City),” while for the
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Fig. 5. Illustration of pseudo lattice paths.

second sentence the result is “�� (very),” which have different
number, position and length. To solve this problem, we extend all
lattice structures into a filled lattice structure, by adding pseudo
lattice paths over character spans that do not form words. To
reduce runtime complexity, we set of limit to the maximum word
size in the lattice. The resulting lattice structure is then uniform
across sentences, where all paths between a character window
are filled with word or pseudo word links.

Formally, the model structure is modified by adding the paths
between all ci and cj (i ∈ {j-len, j-len+1, ..., j-1}) within a
window of size len no matter whether subsequence wd

b,e are
legal words or not, where len is a pre-defined maximum Chinese
word length. To make the lattice structure differentiable, we use
the 0 vector for representing the none words, thus the general
representation of all word subsequence wd

b,e are as follows:

xw
b,e =

{
ew(wd

b,e),

0,

ifwd
b,e ∈ ew;

ifwd
b,e 	∈ ew.

(19)

The hidden vectors hc
j are still computed as described by

Eq. 11. During training, loss values back-propagate to the pa-
rameters Wc,bc,Ww,bw,Wl and bl allowing the model to
dynamically focus on more relevant words during labelling.

C. Contextualized Representation

Large-scaled pretrained multi-layer bi-directional LSTM lan-
guage models have been used for contextualized representations
of words for English [13]. Such representation can also be
pretrained over characters, resulting in contextualized Chinese
embeddings based on character language models. Our multi-
layer lattice LSTM language model can be used to replace a
multi-layer LSTM language model to this goal, and we call the
representation MUlti-layer LAttice Network (MULAN) contex-
tualized representation.

Following [13], given a sentence s = c1, . . ., cm, the contex-
tualized representation of cj is generated by using a weighted
combination of hidden states from different layers:

eLM
j =

l∑
k=0

βtask
k hc,k

j (20)

where h0 stands for the embedding layer, βtask
k are the task

related softmax-normalized weights. k is the layer index.
Our representation eLM

j is character-based, however, it en-
codes both character and word embedding information. The
contextualized representation can be directly used as external

TABLE I
STATISTICS OF DATASETS

input to NLP models, enhancing the power of input embedding
layer representation or the output layer representation. In par-
ticular, in the former case, MULAN representations (Eq. 20) for
each word is concatenated with the input embeddings of each
word as new input embeddings for a task; in the latter case,
we concatenate MULAN embeddings for each word to the last
hidden layers of the end-task encoder, instead of the input layer.
We find empirically that enriching the input representation works
better.

VI. EXPERIMENTS ON NER

We carry out an extensive set of experiments to investigate
the effectiveness of word-character lattice LSTMs for Chinese
NER across different domains. In addition, we aim to empirically
compare word-based and character-based neural Chinese NER
under different settings. Standard precision (P), recall (R) and
F1-score (F1) are used as evaluation metrics.

A. Experimental Settings

Data: Four datasets are used in this paper, which include
OntoNotes 4 [49], MSRA [50] Weibo NER [51], [52] and
a Chinese resume dataset that we annotate. Statistics of the
datasets are shown in Table I. We take the same data split as [53]
on OntoNotes. The development set of OntoNotes is used for
reporting development experiments. While the OntoNotes and
MSRA datasets are in the news domain, the Weibo NER dataset
is drawn from the social media website Sina Weibo.5

For more variety in test domains, we collected a resume
dataset from Sina Finance,6 which consists of resumes of senior
executives from listed companies in the Chinese stock market.
We randomly selected 1027 resume summaries and manually
annotated 8 types of named entities with YEDDA system [54].
Statistics of the dataset is shown in Table II. The inter-annotator
agreement is 97.1%. We release this dataset as a resource for
further research.

Segmentation: For the OntoNotes and MSRA datasets, gold-
standard segmentation is available in the training sections. For
OntoNotes, gold segmentation is also available for the develop-
ment and test sections. On the other hand, no segmentation is
available for the MSRA test sections, nor the Weibo / resume
datasets. As a result, OntoNotes is leveraged for studying oracle
situations where gold segmentation is given. We use the neural

5[Online]. Available: https://www.weibo.com/
6[Online]. Available: http://finance.sina.com.cn/stock/index.shtml

https://www.weibo.com/
http://finance.sina.com.cn/stock/index.shtml


1512 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

TABLE II
DETAILED STATISTICS OF RESUME NER

TABLE III
HYPER-PARAMETER VALUES FOR NER

word segmentor of [44] to automatically segment the develop-
ment and test sets for word-based NER. In particular, for the
OntoNotes and MSRA datasets, we train the segmentor using
gold segmentation on their respective training sets. For Weibo
and resume, we take the best model of [44] off the shelf7, which
is trained using CTB 6.0 [55].

Word Embeddings: We pretrain word embeddings using
word2vec [56] over automatically segmented Chinese Giga-
Word8, obtaining 704.4 k words in a final lexicon. In partic-
ular, the number of single-character, two-character and three-
character words are 5.7 k, 291.5 k, 278.1 k, respectively. The
embedding lexicon is released alongside our code and models as
a resource for further research. Word embeddings are fine-tuned
during NER training. Character and character bigram embed-
dings are pretrained on Chinese Giga-Word using word2vec and
fine-tuned at model training.

Hyper-Parameter Settings: Table III shows the values of
hyper-parameters for our models, which as fixed according to
previous work in the literature without grid-search adjustments
for each individual dataset. In particular, the embedding sizes
are set to 50 and the hidden size of LSTM models to 200.
Dropout [57] is applied to both word and character embeddings
with a rate of 0.5. Stochastic gradient descent (SGD) is used for
optimization, with an initial learning rate of 0.015 and a decay
rate of 0.05.

B. Development Experiments

We compare various model configurations on the OntoNotes
development set, in order to select the best settings for word-
based and character-based NER models, and to learn the influ-
ence of lattice word information on character-based models.

Character-based NER: As shown in Table IV, without using
word segmentation, a character-based LSTM-CRF model gives a
development F1-score of 62.47%. Adding character-bigram and

7[Online]. Available: https://github.com/jiesutd/RichWordSegmentor
8[Online]. Available: https://catalog.ldc.upenn.edu/LDC2011T13

TABLE IV
DEVELOPMENT RESULTS FOR NER

Fig. 6. F1 against the training iteration number.

softword representations as described in Section III-A increases
the F1-score to 67.63% and 65.71%, respectively, demonstrating
the usefulness of both sources of information. In addition, a
combination of both gives a 69.64% F1-score, which is the best
among various character representations. We thus choose this
model in the remaining experiments.

Word-Based NER: Table IV shows a variety of different
settings for word-based Chinese NER. With automatic segmen-
tation, a word-based LSTM CRF baseline gives a 64.12% F1-
score, which is higher compared to the character-based baseline.
This demonstrates that both word information and character
information are useful for Chinese NER. The two methods
of using character LSTM to enrich word representations in
Section III-B, namely word+char LSTM and word+char LSTM′,
lead to similar improvements.

A CNN representation of character sequences gives a slightly
higher F1-score compared to LSTM character representations.
On the other hand, further using character bigram information
leads to increased F1-score over word+char LSTM, but de-
creased F1-score over word+char CNN. A possible reason is
that CNN inherently captures character n-gram information. As
a result, we use word+char+bichar LSTM for word-based NER
in the remaining experiments, which gives the best development
results, and is structurally consistent with the state-of-the-art
English NER models in the literature.

Word-Character Lattice NER: Figure 6 shows the F1-score
of character-based and lattice-based models against the number
of training iterations. We include models that use concatenated
character and character bigram embeddings, where bigrams can
play a role in disambiguating characters. As can be seen from
the figure, lattice word information is useful for improving

https://github.com/jiesutd/RichWordSegmentor
https://catalog.ldc.upenn.edu/LDC2011T13
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TABLE V
MAIN RESULTS ON ONTONOTES

character-based NER, improving the best development result
from 62.5% to 71.6%. On the other hand, the bigram-enhanced
lattice model does not lead to further improvements compared
with the original lattice model. This is likely because words
are better sources of information for character disambiguation
compared with bigrams, which are also ambiguous.

As shown in Table IV, the lattice LSTM-CRF model gives a
development F1-score of 71.62%, which is significantly9 higher
compared with both the word-based and character-based meth-
ods, despite that it does not use character bigrams or word seg-
mentation information. The fact that it significantly outperforms
char+softword shows the advantage of lattice word information
as compared with segmentor word information.

C. Final Results

OntoNotes: The OntoNotes test results are shown in Ta-
ble V.10 With gold-standard segmentation, our word-based
methods give competitive results to the state-of-the-art on the
dataset [53], [58], which leverage bilingual data. This demon-
strates that LSTM-CRF is a competitive choice for word-based
Chinese NER, as it is for other languages. In addition, the results
show that our word-based models can serve as highly compet-
itive baselines. With automatic segmentation, the F1-score of
word+char+bichar LSTM decreases from 75.77% to 71.70%,
showing the influence of segmentation to NER. Consistent with
observations on the development set, adding lattice word infor-
mation leads to an 88.81%→ 93.18% increasement of F1-score
over the character baseline, as compared with 88.81%→91.87%
by adding bichar+softword. The lattice model gives significantly
the best F1-score on automatic segmentation.

MSRA: Results on the MSRA dataset are shown in Table VI.
For this benchmark, no gold-standard segmentation is available
on the test set. Our chosen segmentor gives 95.93% accuracy on
5-fold cross-validated training set. The best statistical models
on the dataset leverage rich handcrafted features [60]–[62] and
character embedding features [33]. [34] exploit neural LSTM-
CRF with radical features.

9We use a p-value of less than 0.01 from pairwise t-test to indicate statistical
significance.

10In Table V VI and VII, we use * to denote a model with external labeled
data for semi-supervised learning. † means that the model also uses discrete
features.

TABLE VI
MAIN RESULTS ON MSRA

TABLE VII
WEIBO NER RESULTS

TABLE VIII
MAIN RESULTS ON RESUME NER

Compared with the existing methods, our word-based and
character-based LSTM-CRF models give competitive accura-
cies. The lattice model significantly outperforms both the best
character-based and word-based models (p < 0.01), achieving
the best result on this standard benchmark.

Weibo/Resume: Results on the Weibo NER dataset are shown
in Table VII, where NE, NM and Overall denote F1-scores for
named entities, nominal entities (excluding named entities) and
both, respectively. Gold-standard segmentation is not available
for this dataset. Existing state-of-the-art systems include [4]
and [63], who explore rich embedding features, cross-domain
and semi-supervised data, some of which are orthogonal to our
model.11

Results on the resume NER test data are shown in Table VIII.
Consistent with observations on OntoNotes and MSRA, the
lattice model significantly outperforms both the word-based
mode and the character-based model for Weibo and resume
(p < 0.01), giving state-of-the-art results.

D. Discussion

F1 Against Sentence Length: Figure 7 shows the F1-scores of
the baseline models and lattice LSTM-CRF on the OntoNotes
dataset. The character-based baseline gives relatively stable
F1-scores over different sentence lengths, although the per-
formances are relatively low. The word-based baseline gives
substantially higher F1-scores over short sentences, but lower

11The results of [4], [51] are taken from [64].
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Fig. 7. F1 against sentence length for NER.

TABLE IX
NER EXAMPLES. RED AND GREEN REPRESENT INCORRECT AND

CORRECT ENTITIES, RESPECTIVELY

F1-scores over long sentences, which can be because of
lower segmentation accuracies over longer sentences. Both
word+char+bichar and char+bichar+softword give better per-
formances compared to their respective baselines, showing
that word and character representations are complementary for
NER. The accuracy of lattice also decreases as the sentence
length increases, which can result from exponentially increasing
number of word combinations in the lattice. Compared with
word+char+bichar and char+bichar+softword, the lattice model
shows more robustness to increased sentence lengths, demon-
strating the more effective use of word information.

Case Study: Table IX shows a case study compar-
ing char+bichar+softword, word+char+bichar and the lattice
model. In the example, there is much ambiguity around
the named entity “���� (Taiwan Association in Dong-
guan)”. Word+char+bichar yields the entities “�� (Dong-
guan)” and “� (Taiwan)” given that “���� (Taiwan
Association in Dongguan)” is not in the segmentor output.
Char+bichar+softword recognizes “����� (Taiwan As-
sociation in Dongguan),” which is valid on its own, but leaves
the phrase “���� (Long duties after)” ungrammatical.
In contrast, the lattice model detects the organization name
correctly, thanks to the lattice words “�� (Dongguan),” “��

(President)” and “�� (role)”. There are also irrelevant words
such as “��� (Taiwan Association)” and “�� (noisy word)”
in the lexicon, which did not affect NER results.

Note that both word+char+bichar and lattice use the same
source of word information, namely the same pretrained word
embedding lexicon. However, word+char+bichar first uses the

TABLE X
ENTITIES IN LEXICON

lexicon in the segmentor, which imposes hard constrains (i.e.
fixed words) to its subsequence use in NER. In contrast, lattice
LSTM has the freedom of considering all lexicon words.

Entities in lexicon: Table X shows the total number of entities
and their respective match ratios in the lexicon. The error reduc-
tions (ER) of the final lattice model over the best character-based
method (i.e. “+bichar+softword”) are also shown. It can be seen
that error reductions have a correlation between matched entities
in the lexicon. In this respect, our automatic lexicon also played
to some extent the role of a gazetteer [29], [48], but not fully
since there is no explicit knowledge in the lexicon which tokens
are entities. The ultimate disambiguation power still lies in the
lattice encoder and supervised learning.

The quality of the lexicon may affect the accuracy of our NER
model since noise words can potentially confuse NER. On the
other hand, our lattice model can potentially learn to select more
correct words during NER training. We leave the investigation
of such influence to future work.

VII. EXPERIMENTS ON LM AND MULAN EMBEDDINGS

In this section, we report comparisons between lattice LSTM
and bi-LSTM on language modeling, and the corresponding
contextualized representations, namely MULAN and ELMo,
on Chinese sequence labeling tasks including POS tagging,
chunking, NER and dependency parsing. Note that we report
experiments for both language modeling and experiments on
contextualized embeddings in the same section, due to the reason
that contextualized embeddings are trained using the model
structure of language modeling. As a result, we keep the same
model configurations and hyper-parameter settings for the two
set of experiments. We also try to keep other experimental
settings consistent for the two sets of empirical investigation.

A. Experimental Settings

Language Modeling: We study the performance of character-
based, word-based and lattice LSTM models on the development
data for Chinese language modeling. We subsample 1 million
sentences from the Chinese Gigaword corpus Fifth Edition12

for language modeling. Sentences with a length of 30 to 40
characters are selected. <bos> and <eos> tokens are added to
the two ends of each sentence. The word segmentation model
of Yang et al. [44] is applied for word models, and words that
appear less than five times are replaced with <unk>. The total

12[Online]. Available: https://catalog.ldc.upenn.edu/LDC2011T13

https://catalog.ldc.upenn.edu/LDC2011T13
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TABLE XI
HYPER-PARAMETER VALUES FOR LANGUAGE MODELING

vocabulary size for characters and words are 7048 and 89675,
respectively. Standard per character perplexity (PPL) is used as
our evaluation metric for language modeling in both the forward
and the backward direction. Word perplexities are converted into
character perplexities cppl for direct comparison:

cppl = 2
− 1

ni

∑ni
j=1

1
1+log2 |wj | log2P (wj |wj−1,...,w1)

where |wj | is the length of word wj .
We use the generated lexicon vocabulary D from Song

et al. [65] for word embedding. Adam [66] is used for optimiza-
tion. During training, word embeddings are fixed while character
embeddings are fine-tuned. Dropout [57] is applied to all input
embedding layers, with a rate of 0.1. The hyper-parameter
settings of both sequential and lattice LSTM models are shown
in Table XI, which are selected on the language modeling de-
velopment data using the respective methods. It is worth noting
that different from the hyper-parameter settings for NER, the
number of LSTM layers that gives the best development results
for language modeling is 2, which reflects the fact that language
modeling is a more challenging task with a larger dataset to fit.

Contextualized embeddings: We train contextualized embed-
dings over the Gigaword dataset by using both the ELMo model
and the MULAN model discussed in Section III. We use the
hyper-parameter settings for language modeling directly for
training contextualized embeddings.

We choose ELMo as our baseline contextualized embed-
ding model because the word-character lattice model on which
MULAN embeddings are built is a nature extension of the
sequential LSTM model on which ELMo is based, and there-
fore it is straightforward to make fair comparison between the
two models. Recently, models based on self-attention-network
architectures (i.e., Transformer [42]), such as BERT [15] and
RoBERTa [67] have been shown to give highly competitive
performances compared with ELMo. We take the readily trained
Chinese models of BERT13 and RoBERTa14 as additional base-
lines for comparison. However, these models are trained over
different sets of data, which makes the comparison indirect.15

Each contextualized embedding model is used to replace a
traditional embedding model for providing input representations
to NLP models. We conduct experiments over the following
tasks.

POS Tagging. Chinese Treebank [55] 5.0 (CTB5) is selected
for joint segmentation and POS tagging tasks. The standard

13[Online]. Available: https://github.com/google-research/bert
14[Online]. Available: https://github.com/pytorch/fairseq/tree/master/examples/roberta
15Due to hardware limitation we did not perform training of BERT and

RoBERTa models on our dataset.

Fig. 8. LM results on development data.

split of the dataset is used following Shao et al. [68]. We
solve the joint segmentation and tagging problem as character
sequence labeling, following the combined label scheme of Ng
and Low [69].

Chunking. Chinese Treebank 4.0 (CTB4) is used. We ex-
tract the chunking data following Chen et al. [70] using
ChunkLinkCTB.16 The same training, development and test
dataset split are used by following Lyu et al. [71]. We also
solve the joint segmentation and tagging problem as character
sequence labeling. In particular, B, I, E, S labels are used on
characters to represent the beginning, inside, end of a chunk or
a single independent character.

NER. Similar to the previous section, we use OntoNotes
4 [49] for named entity recognition, with the BIOES tagging
scheme [48] being taken on characters.

Parsing. We use Chinese Treebank 5.0 for dependency pars-
ing, the standard unlabeled attachment score (UAS) and labeled
attachment score (LAS) are used as evaluation metric.

B. Development Experiments

Comparison between char, word, and lattice based models:
Figure 8 shows the averaged forward and backward charac-
ter perplexity scores on the development data. We find that
character-based models give significantly lower perplexities
compared to word-based models. This observation is consistent
with the findings of Wu et al. [72]. One reason can be that
word segmentation errors have a major influence on word-level
language modeling. In addition, the much larger vocabulary for
words makes it more difficult for prediction and generalization.
A further disadvantage of word-based language modeling for
Chinese arise from different segmentation standards in different
treebanks. We thus focus on character and lattice models for the
remaining experiments.

Influence of number of layers: In Figure 8, multi-layer mod-
els perform better than single-layer models, which shows the
stronger representation power of deep hidden states. There is
a peak number of layers for each model beyond which fur-
ther more layers do not lead to better results. Similar to the
observation of [13], a two-layer word-based model gives the

16[Online]. Available: https://github.com/rainarch/ChunkLinkCTB

https://github.com/rainarch/ChunkLinkCTB
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Fig. 9. Influence of max word length for LM.

TABLE XII
LM EVALUATION ON TEST DATA

best per character perplexity result of 64.86. In comparison, a
three-layer word-based model gives a worse perplexity of 67.74.
For character-based language modeling, the three-layer char-
based model gives a 35.81 perplexity, with a 0.58% improvement
compared with 36.02 of two-layer char-based model. The best
lattice LSTM model gives a perplexity of 33.53, significantly
lower compared to that of 35.81 by the best char-based model
language model on the development set.

Influence of word length limit: The word length limit len influ-
ences the complexity of our model and decides how much word
information can be utilized. Figure 9 shows the learning curves
of one-layer MULAN with different length limits. Models with
len = 2,3,4,5 give final perplexities of 34.94, 34.10, 33.53 and
33.40, respectively, showing that the performance benefits from
more word information incorporation. However, the average
training time per epoch increase from 2h58min to 4h41min,
5h53min and 7h35min when len increases from 2 to 3, 4 and
5, respectively. Considering that the majority of words do not
exceed 4 characters in length, we set len = 4 for testing as well
as the final models for pre-training.

C. LM Results

Performances on the test dataset are shown in Table XII.
For all the models, the forward perplexity is almost the same
as the backward perplexity, with the backward values being
slightly lower. Consistent with results on the development set,
the lattice LSTM model stably outperforms the character-based
LSTM models. In particular, the three-layer character-based
model gives a 36.21 forward perplexity and a 36.12 backward
perplexity, while the two-layer lattice model gives a forward
perplexity of 33.82 and a backward perplexity of 32.72, respec-
tively.

TABLE XIII
MULAN RESULTS FOR ON POS TAGGING

TABLE XIV
MULAN RESULTS FOR CHUNKING. † DENOTES WORD-LEVEL MODELS. ‡

DENOTES WITH GOLD WORD SEGMENTATION

D. Results for Contextualized Embeddings

We compare ELMo embeddings and MULAN embeddings
trained on the same dataset for POS-tagging, chunking, NER
and dependency parsing.

POS tagging: Results on POS tagging are shown on Ta-
ble XIII. ZPar [73] employs structured perceptron incorporating
local character and word features. Among neural methods, Ku-
rita et al. [74] build a joint model for transition-based Chinese
syntactic analysis, Shao et al. [68] and Zhang et al. [75] use
BiRNN-CRF and Seq2Seq for joint segmentation and POS
tagging, respectively. The above models give the F1-score of
93.73, 94.83, 94.07 and 94.95, respectively. A lattice LSTM-
CRF model gives significantly better results compared to char
LSTM-CRF. Both ELMo and MULAN embeddings give further
improvements to the results, with MULAN giving the best F-
score (with word segmentation integrated) of 95.17. Compared
with transformer based models, BERT and RoBERTa gives
similar results with 95.12 and 95.16. To our knowledge, the
result of our model is the current best record in the literature on
this dataset.

Chunking: Table XIV shows the results for chunking. With
gold segmentation, the word-level chunking models of Chen
et al. [70] and Zhou et al. [76] give F1-scores of 91.68 and
92.11, respectively. In contrast, the performance of the seg-
mentation and chunking pipeline model reported by Lyu [71]
gives a significantly lower F1-score of 69.02, demonstrating
the negative influence of word segmentation for word-level
models. For a character-level model, Lyu et al. [71] proposed
joint word segmentation, chunking and POS tagging, giving a
72.09 F1-score. Our lattice BiLSTM improves the performance
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TABLE XV
MULAN RESULTS FOR NER. † DENOTES WORD-LEVEL MODELS

TABLE XVI
RESULTS ON DEPENDENCY PARSING

with a 85.39 F1-score, demonstrating a significant improvement
over a character bi-LSTM model. This also demonstrates the
advantage of neural models as compared with statistical models
for the task. For all the pretraining models, all embeddings give
further improvements, with RoBERTa being the strongest on the
dataset, our MULAN model also gives comparable result with
85.88.

NER: Table XV shows the results on NER. Our reimple-
mented lattice LSTM model achieves a 75.37 F1-score, outper-
forming the 73.88 F1-score in Table V. This is largely due to the
use of embeddings from Song et al. [65], which demonstrates
the larger word embeddings has a large influence on lattice
model performances. Among contextualized embeddings, MU-
LAN representation gives a 76.91 F1-score, outperforming the
75.92 F1-score given by ELMo representations significantly.
Our model still better than BERT and RoBERTa in F1-scores,
showing the importance of explicit word lexicon information.

Parsing: Table XVI shows the results on dependency parsing.
We reimplemented the biaffine parser [78] as our base model
and compare the models with different pretraining embeddings.
The results are consistent with the other tasks. In particular, the
biaffine parser gives results of 90.07 UAS and 85.98 LAS. Using
ELMo embeddings, the results are improved to 90.23 UAS and
88.88 LAS. MULAN further led to a small improvement of
90.50 UAS and 89.22 LAS. BERT and RoBERTa gave scores
of 90.53/89.26 and 90.56/89.28, respectively, which are slightly
better than MULAN. However, as mentioned earlier the results
are not directly comparable. MULAN gives highly competitive
results among these SAN contextualized embeddings.

Implicit word segmentation: Intuitively, large scale language
modeling training can lead to better implicit word segmentation
in MULAN. We compare MULAN with the lattice LSTM on a
simple segmentation task. In particular, we fix the whole model
structure, while adding a trainable softmax layer on each char-
acter for predicting BIES labels on CTB5. MULAN and lattice

TABLE XVII
EXAMPLE OF WORD SEGMENTATION BETWEEN MULAN AND LATTICE LSTM

MODELS. BOLD PART INDICATES INCORRECT SEGMENTATION RESULTS

LSTM give final F1-scores of 92.00 and 91.18, respectively,
demonstrating better word information by MULAN.

A case study is shown in Table XVII. Although both mod-
els incorporate word and character information, lattice LSTM
makes an incorrect segmentation for the character segment “�
���” (news on the 20th), largely due to the fact that “��”
(NEC Corporation.) is a named entity in the lexicon. In contrast,
MULAN makes the correct prediction for detecting the word “�
��” (20th) and single character “�” (news) thanks to large
scale language modeling training.

VIII. CONCLUSION

We discussed the representation of Chinese sentences using a
word-character lattice LSTM structure, empirically comparing
it with sequential LSTM representations built on character-
sequences and pre-segmented word sequences, respectively.
On both NER and LM tasks, word-character lattice LSTM
gives significantly better performances compared to both the
character-based and word-based counterparts. In addition, when
being used for contextualized embeddings, the word-character
lattice method gives better results compared to its sequential
LSTM counterpart, namely ELMO, on a range of Chinese NLP
tasks such as POS-tagging, chunking, NER and dependency
parsing. We release our code and contextualized embedding
models for further research.
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